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Ant colony optimization (ACO) is an optimization computation inspired by the study of the ant colonies’
behavior. This paper presents design and CMOS implementation of the ant colony optimization based
algorithm for solving the TSP problem. In order to implement ant colony optimization algorithm in CMOS,
we will present a new algorithm. This algorithm is based on the original ant colony optimization but it
can be implemented in CMOS. Briefly, pheromone matrix is transformed on the chip area and ants move
up-down through the pheromone matrix and they make their decisions. Finally ants select a global path.
In previous researches only pheromone values is used, but select the next city in this paper is based on
heuristics value and pheromone value. In definition of problem, we use heuristics value as a matrix. Pre-
vious researches could not be used for wide type of optimization problem but our chip gives heuristics
value initially and we can change initial value of heuristics value according to the optimization problem
so this capability increases the flexibility of ACO chip. Simple circuit is used in blocks of our chip to
increase the speed of convergence of ACO chip. We use Linear Feedback Shift Register (LSFR) circuit for
random number generator in ACO chip. ACO chip has capability of solving the big TSP problem. ACO chip
is simulated by HSPICE software and simulation results show the good performance of final chip.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

From viewpoint of software, there are plenty of researcher
being done on information technology, particularly in artificial
intelligence (AI). In contrast, there has been little study on hard-
ware because of the difficulty of producing and using general-pur-
pose versions, therefore we are attempting to realize AI using
CMOS technology.

Natural evolution has yielded biological systems in which com-
plex collective behavior emerges from the local interaction of sim-
ple components. One example where this phenomenon can be
observed is the foraging behavior of ant colonies. In ACO, a number
of artificial ants build solutions to the considered optimization
problem at hand and exchange information on the quality of these
solutions via a communication scheme that is reminiscent of the
one adopted by real ants. Different ant colony optimization algo-
rithms have been proposed. The original ant colony optimization
algorithm is known as Ant System (Dorigo, Maniezzo, & Colorni,
1991, 1996) and was proposed in the early nineties. Ant colony
optimization has been formalized into a Metaheuristics for combi-
natorial optimization problems by Dorigo and Di Caro (1999),
Dorigo, Di Caro, and Gambardella (1999).

Computational technique implementations, such as neural net-
works (Jung & Kim, 2007), fuzzy controllers (Juang & Chen, 2006;
ll rights reserved.

i).
Li, Chang, & Chen, 2003), adaptive fuzzy controller (Juang & Hsu,
2005), and GA (Aporntewan & Chongstitvatana, 2001), Field-Pro-
grammable Gate Arrays (FPGA) chip have been proposed. In Merkle
and Middendorf (2002), they studied the problem of implementing
the ACO on large processor arrays with small processors that have
only a constant number of registers. The main new features of their
work were the non-generational approach and the use of a thresh-
old based decision function for the ants. This was first implemen-
tation of the ACO approach on a reconfigurable architecture.

In Scheuermann et al. (2004), a population-based ACO (P-ACO)
is implemented on an FPGA chip and the designed chip is applied
to a Single Machine Total Tardiness Problem (SMTTP). They dem-
onstrated that a straightforward hardware mapping of the stan-
dard ACO algorithm is not very well suited to implementation on
the resources provided by current commercial FPGA architectures.
Instead, they suggested using the Population-based ACO (P-ACO),
in which pheromone information is replaced by a small set (popu-
lation) of good solutions discovered during the preceding itera-
tions. Accordingly, the combination of pheromone updates and
evaporation has been replaced by inserting a new good solution
into the population, replacing the oldest solution from the popula-
tion. Experimental results indicated that P-ACO performs at least
as well as the standard ACO approach (Scheuermann et al.,
2004). In Nakao and Izumi (2004), an ant chip is designed and fab-
ricated. They realized hardware based on the foraging behavioral
model using a hardware description language (HDL). In this work,
they by extracting ant foraging behavior in detail, integrating the
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function onto one chip, and constructing the hardware environ-
ment on an LSI. They fabricated AI-LSIs on a chip for the first time
using an ant model. Their designed chip had 111 pins for quasi-TSP
problem with three cities and one nest, therefore the number of re-
quired pins for real world application with many cities is very
much so their approach is not applicable. In Juang, Lu, Lo, and
Wang (2008), ACO applied to Fuzzy Controller (FC) design, called
ACO-FC, for improving design efficiency and control performance,
as well as ACO hardware implementation. The ACO used in ACO-
FC is based on the known ant colony system and is hardware-
implemented on a FPGA (Field Programmable Gate Array) chip.
They had used external PC to calculate performance measure per
ant in current iteration but our proposed chip, itself calculates per-
formance measure of ant and stores it in the solution memory. It
uses solution memory at end of iteration to find the best ant in
the iteration.

In this paper, CMOS implementation of Ant Colony Optimiza-
tion algorithm is presented. Designed chip takes heuristics values
and pheromone values initially, and then it starts its operation.
We can change the heuristics value according to the problem.
We have used simple circuits in our design to increase the speed
of operation.

Final chip is tested by TSP problem but it can be used for an-
other optimization problem in which we define the problem by
heuristics values (heuristics matrix). Selection scheme for next city
is based on Roulette wheel in GA (Genetic Algorithm). It causes
that our ACO chip is converged in less iteration than previous ap-
proaches. Therefore, our chip finds the optimum path very earlier
than previous approaches.

The remainder of this paper is organized as follows. Section 2
provides a brief introduction of Ant Colony Optimization (ACO)
algorithm. In Section 3, the proposed ACO algorithm is presented
and CMOS implementation of the proposed ACO is introduced in
Section 4. Timing of pulse of ACO chip is described in Section 5.
Simulation results are shown in Section 6. Finally, Conclusion is
presented in Section 7.

2. Ant colony optimization

Here, we briefly introduce ACO and its application by using TSP
as an example (Dorigo, Birattari, & Stützle, 2006; Dorigo & Di Caro,
1999; Dorigo et al., 1991, 1996, 1999). In the TSP, a given set of n
cities has to be visited exactly once and the tour ends in the initial
city. We denote the edge between city i and j as (i, j) and its dis-
tance as dij(i, j e [1, n]). Let sij(t) be the intensity of pheromone on
(i, j) at time t, and use sij(t) to simulate the pheromone of the real
ants. Suppose m is the total number of ants in each iteration and
ant k in city i selects next city j according to the following proba-
bility distribution:

pijðtÞ ¼
sa

ij
ðtÞ�gb

ij
ðtÞP

r2allowedk
sa

ir
ðtÞ�gb

ir
ðtÞ

j 2 allowedk

0 otherwise

8<
: ð1Þ

where allowedk is a set of the cities can be chosen by the kth ant at
city i for the next step, gij is a heuristic function which is defined as
the visibility of the link between cities i and j. For TSP problem it can
defined as 1/dij.

The relative influence of the trail information sij and the visibil-
ity gij are determined by the parameters a and b. The intensity of
pheromone is updated by the Eq. (2)

sijðt þ 1Þ ¼ qsijðtÞ þ Dsij ð2Þ

where 0 < q < 1 represents the evaporation of sij(t) between time t
and t + 1, Dsij is the increment of the pheromone on (i, j) in step t.
Eq. (3) shows the formula of Dsij based on Dsk

ij. Dsk
ij is the phero-
mone laid by the kth ant on it. It takes different formula depending
on the model used.

Dsij ¼
Xm

k¼1

Dsk
ij ð3Þ

For example, in the most popularly used model called ‘‘ant cir-
cle system”, it is given as Eq. (4).

Dsk
ij ¼

Q
Lk

if the kth ant passesði; jÞin current tour

0 otherwise

(
ð4Þ

where Q is a constant and Lk is the total length of current tour trav-
eled by the kth ant.

In hardware realization of ACO, the Eq. (1) often change
(Scheuermann et al., 2004; Nakao & Izumi, 2004). For example,
the heuristic information (gij) usually ignore for generality and to
ease the implementation so we do not need multiplier and divider
circuit. In our work, we present a new scheme for selection of next
city based on Rollout wheel and we do not ignore heuristic (gij). In
most work, a is one to avoid exponentiation because exponentia-
tion circuit needs very large space on the chip area and it needs
high power consumption.
3. Proposed ACO algorithm

When we want to implement an artificial intelligent algorithm,
there are two options. First is software implementation using per-
sonal computer and second is hardware implementation. If com-
puter be used, we can implement the original algorithm and
there is not any limitation for software implementation. Condi-
tional commands or loops in the program can be used and we
can define our variables with desirable bits but a designer of inte-
grated circuit cannot implement the original algorithm on the chip
area because of some limitation such as register length, speed,
power consumption, delay and jitter (Razavi, 2000; Weste & Esh-
raghian, 1994), so the original algorithm must be changed. These
changes are one of the most important things in hardware imple-
mentation of artificial intelligence algorithm. These changes
should not decrease performance of the final algorithm (Gheysari,
Khoei, & Mashoufi, 2009).

The proposed ACO is very similar to original ACO. This algo-
rithm is based on original ant colony optimization but it can be
implemented in CMOS. The general principle of proposed ACO
algorithm is based on the algorithm used in Scheuermann
(2005). The principle of this algorithm is to embed the n � n pher-
omone matrix M into an n � n cell so that cellij contains only the
pheromone value sij, i, j e [1:n]. The ants are then pipelined
through the pheromone matrix. Flowchart of the proposed ACO
algorithm is shown in the Fig. 1. Fig. 2 shows the movement of
ant through the pheromone matrix.

First stage is RESET and second stage is load of initial values of
cells (heuristics & initial pheromone) according to the optimization
problem. Then, first iteration starts and ant counter increases one
unit and first ant (a = 1) begins its tour through pheromone matrix.
One of the cells in row 1 is selected by ant 1. Suppose, ant 1 selects
cell 2 in row 1. At first, all elements of selection set of ant 1 are one,
but when ant 1 selects a cell in row 1, the corresponding item in
selection set (Sa1,2) becomes zero. Therefore, ant 1 does not select
cell 2 in other rows of the chip and it prevents cycle in the algo-
rithm. Connection of cells to prevent cycle in the algorithm is very
simple, and Fig. 3 shows this connection for 16 cells. Finally, at the
final row of chip, all elements in selection set become zero and the
ant has made a closed tour.

The pheromone value of the selected cell decreases (local pher-
omone update in ACO).
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Fig. 1. Flowchart of proposed ACO algorithm.

Fig. 2. Movement of ants through pheromone matrix.
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Fig. 3. Connection of cells in ACO chip for 16 cells.
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Pheromone is implemented by a loadable decremental counter.
Thereby, reducing the attractiveness of the respective arc for fol-
lowing ants. Consequently, the exploration of not yet visited arcs
is supported and ants are less likely to converge to a common path
in the chip.

Every cell has a memory in itself. When an ant selects the cell,
this memory saves selection of ant with index of ant. At the end of
iteration, the path of best ant will be found by reading this memory
in each cell. Finally, we find the path of the best ant with this mem-
ory in each cell, in others words, this memory shows that if ant i
had selected this cell in its path.

A circuit as Best Ant Finder is designed to find the best ant. The
operation of Best Ant Finder will be described in next section.
The output of the best ant finder circuit is the index of the best
ant. The best ant have maximum sum of heuristics at the end of
iteration. After finding the cells of path of best ant, the pheromone
value of these cells is added with a constant (Global pheromone
update in original ACO). Thus, some amount D of pheromone is
added to element sij of these cells of ACO chip (pheromone circuit
of cells). This procedure executes a number of iterations until a
specified stopping criterion has been met, e.g. a predefined maxi-
mum number of iterations have been executed, a specific level of
solution quality has been reached, or the best solution has not
changed over a certain number of iterations.
3.1. Selection of next city

Next cell is selected by Next City Selector Circuit. This circuit
calculates the following equation for ant a with selection set (Sa)
in row i � 1:
pij ¼
Xn

k¼1

Saiksikgik ð5Þ

Then a random number generator circuit generates a random
number (ri) and if pi;j�1 6 ri < pij then cell(i, j) will be selected and
item j in selection set gets zero.
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3.2. Best ant

The property for selection of the best ant at the end of iteration
is sum of heuristics of cells which is selected by the ant in its path
through ACO chip. Eq. (6) shows it:

pij ¼
Xn

k¼1

gik ð6Þ

At the end of the iteration, the ant that has maximum sum of
heuristics is best ant in that iteration. This property, for the first
time, is used for selection of best ant. In TSP problem, heuristics va-
lue is inverse of distance between cities. Inverse of distance must
be multiplied with a constant. Result is rounded to nearest integer,
and then this integer loads into cells of ACO chip. The bit length
which is used for heuristics is 8 then heuristics value must be low-
er than 256.
4. CMOS implementation of proposed ACO

In this section, the proposed algorithm is implemented in CMOS
technology and different blocks of ACO chip are presented. Fig. 4
shows the architecture of ACO chip. This chip contains 9 cells. This
small architecture is selected for better description but it can be
used for bigger problem with more cells.

ACO chip contains many block but we describe the most impor-
tant blocks in the following sections.

4.1. Cell

Cell is the main block in ACO chip and it has many tasks. Fig. 5
shows the block diagram of the cell. The timing diagram of cell will
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Fig. 4. Architecture of proposed ACO chip.

Fig. 5. Block diagram of Cell.
be described in the Section 5. Most important blocks of Cell are: a
loadable decremental counter, decision memory, and pheromone
adder. Loadable decremental counter has role of pheromone in
the cells of ACO chip. It takes initial value of pheromone and starts
its work. Every ant is allowed to update and evaporate a certain
amount of pheromone directly after is has found a solution. This
amount of evaporation is one unit.

Decision memory saves the decision of ant with index of ant.
Reading decision memory shows that if ant i had selected this cell
in its path. Fig. 6 shows the schematic of Decision Memory.

At end of iteration, for finding the cells of path of best ant,
pheromone adder block adds a constant with current value of
pheromone.
4.2. Next city selector circuit

This circuit selects next city based on pheromone and heuristics
values of cells in the next row of chip. It works randomly, but prob-
ability of select a cell with more pheromone value and more heu-
ristics value is high. In other words, every selectable item has at
least some small probability of being chosen by an ant.

There is a random number generator circuit in each row of cell
that generates a random number. Random number comes to the
next city selector circuit as ri. Block diagram of next city finder cir-
cuit for four cities is shown in the Fig. 7. It is for 8 bit but for big
problem with many cities, we can increase the number of bit easily
because in bigger problem,

P
igik cannot be presented by 8 bit and

we need bigger bit register width.
Next City Selector Circuit consists of four stages. First block is

digital multiplier that multiplies ni with S � tiji. Second block is



Fig. 6. Schematic of solution memory.

Fig. 7. Next city selector circuit.

Fig. 8. Schematic of DAC of next city selector circuit.
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DAC. Output of multiplier is connected to DAC. DAC behaves sim-
ilar to Current Mode DAC and converts digital data from multiplier
to analog data (current). Schematic of DAC is shown in the Fig. 8.

After DAC is mirror3. It mirrors input current in output
branches. Output current of mirror3 goes to CMP block. If Iin1 < Ir-

i < Iin2 then output becomes high (logical one = 3.3 V).
Fig. 9. Comparator circuit.
4.3. Comparator circuit

Comparator circuit is shown in the Fig. 9. Inputs of Comparator
are currents, in others words, it is a Current-Mode analog compar-
ator. Output is digital and connects to the corresponding cell of
ACO chip, which is shown in the Fig. 7. If Iin1 < Iri < Iin2 then output
becomes high (3.3 V).
4.4. Solution memory

There is a solution memory in ACO chip. You can see the place of
solution memory in ACO chip in the Fig. 4. Solution memory finds
the index of best ant in current iteration. It compares the sum of
heuristics of each ant to last ant and if sum of heuristics of current
ant is bigger than last ant then it saves the index of current ant as
best ant index. Schematic of Solution memory is shown in the
Fig. 10.



Fig. 10. Solution memory circuit.

Fig. 12. Timing of five signals (clock, reset, load, /a, /SM).
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4.5. Random number generator

There is a random number generator in each row of ACO chip.
This block generates a random number for row i. RNG works based
of LSFR (Linear Feedback Shift Register).

A linear feedback shift register (LFSR) is a shift register whose
input bit is a linear function of its previous state. LSFR is shown
in the Fig. 11 which has 15 bits. Polynomial of LSFR is:

pðxÞ ¼ x13 þ x9 þ x8 þ x7 þ x5 þ x0 ð7Þ
Fig. 13. Timing of three signal (/a, /SM, /best).
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lτφ
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Fig. 14. Timing of signals of CELL.
5. Timing

Timing of ACO chip pulses is described in this section. We have
designed a digital controller to generate the control signals for ACO
chip. Five important pulses are shown in the Fig. 12. At first, re-
set = 1 and then initial values is loaded (load = 1). Now, first ant
(a = 1) starts its tour and ant counter increases one unit. This ant
moves through chip, when this ant gets final row, its solution saves
in the Solution Memory (/SM = 1). This process repeats for all ants.
In this figure, we supposed that three is three rows in ACO chip.

After making solution by each ant, /best becomes high and index
of best ant in current iteration is found. This timing is shown in the
Fig. 13. In this figure, we supposed there are three ants in each
iteration.

Every cell has specific timing which is shown in the Fig. 14. This
timing does not have any relation to number of cell in ACO chip. It
has three stages. At first stage, initial values is loaded and then ran-
dom number is read from Random Number Generator (/ri = 1).
Afterwards, next city selector selects a cell in row randomly, and
this cell saves in Decision Memory of the selected cell.
6. Simulation results

Several simulation cases were conducted to assess the perfor-
mance of the ACO chip. In this section, the simulation results of
ACO chip for different TSP problem will be presented. Simulation
results are for HSPICE software in 49 level 0.35 lm CMOS technol-
ogy. Input clock is 50 MHz. The parameters used for the test runs
are: m = 8, a = 1, b = 1, C = 7.

We tested the optimization behavior of ACO chip on TSP in-
stances TSP-LIB (Reinelt, 1991).
Fig. 11. Linear Feedback Shif
Fig. 15 shows the final answer of ACO chip for TSP problem with
10 cities. This ACO chip contains 100 cells. It can be seen from the
Fig. 15 that ACO chip approximately is converged after 400 itera-
tions (8 ls). Then, ants have selected a common path in ACO chip
and there is not any change in sum of heuristics of best ant.

Fig. 16 is answer of ACO chip for TSP problem with 17 cities. It is
converged in 1200 iterations (24 ls). It is understood form this
experiment that ACO chip needs more time for big problem.

Sum of heuristics of best ant in ACO chip with 48 cells (2304
cells) is shown in the Fig. 17. It can be seen from the Fig. 17 that
ACO chip is converged in 35,000 iterations (0.7 ms).

We used many integrated circuit design techniques in ACO chip
to increase the capability of final chip in solving big TSP problem
t Register (LSFR) circuit.
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but proposed ACO chip cannot be used for bigger TSP problem than
TSP problem with 48 cities.

There are many reasons. Clock signals are the heartbeats of dig-
ital systems. Capacitor of some nodes in the chip becomes very
much and we cannot drive this large capacitor. To solve this prob-
lem, we used a chain of inverters as driver (Uyemura, 2001; Weste
& Eshraghian, 1994).

Signal a (index of current ant) is connected to all of cells in ACO
chip. For big problem, the capacitor of this node gets very large. We
use H-Tree clock distribution structure for signal a, therefore in
such a structure, the distances from the center to all branch points
are the same and hence, the signal delays would be the same. How-
ever, this structure is difficult to implement in practice for big
problem due to routing constraints and different fan-out require-
ments. In big TSP problem, the clock signals must be buffered in
multiple stages to handle the high fan-out loads (Weste & Eshragh-
ian, 1994).

We attempt to design a high speed ACO chip in here but for low
speed chip (input clock lower than 100 KHz) many of mentioned
problems are solved.
7. Conclusion

In this paper, an ACO chip is designed in 0.35 lm CMOS tech-
nology for the first time. A new ACO algorithm was presented
which is suitable for CMOS implementation. This algorithm use
sum of heuristics for select of best ant at the end of iteration. We
used both heuristics value and pheromone value in ACO chip.
Our chip converges in less iteration than last approaches because
a new scheme for selection of next city is used. This chip is
Mixed-Mode (Analog & Digital) chip and can be used for adaptive
routing in telecommunication networks.
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